Electronic response of aluminum-bearing minerals.
Micah P PrangeXin ZhangEugene S IltonLibor KovarikMark H EngelhardSebastien N KerisitPublished in: The Journal of chemical physics (2018)
Aluminum-bearing minerals show different hydrogen evolution and dissolution properties when subjected to radiation, but the complicated sequence of events following interaction with high-energy radiation is not understood. To gain insight into the possible mechanisms of hydrogen production in nanoparticulate minerals, we study the electronic response and determine the bandgap energies of three common aluminum-bearing minerals with varying hydrogen content: gibbsite (Al(OH)3), boehmite (AlOOH), and alumina (Al2O3) using electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and first-principles electronic structure calculations employing hybrid density functionals. We find that the amount of hydrogen has only a small effect on the number and spectrum of photoexcitations in this class of materials. Electronic structure calculations demonstrate that low energy electrons are isotropically mobile, while holes in the valence band are likely constrained to move in layers. Furthermore, holes in the valence band of boehmite are found to be significantly more mobile than those in gibbsite, suggesting that the differences in radiolytic and dissolution behavior are related to hole transport.