Login / Signup

Unsupervised learning for local structure detection in colloidal systems.

Emanuele BoattiniMarjolein DijkstraLaura Filion
Published in: The Journal of chemical physics (2019)
We introduce a simple, fast, and easy to implement unsupervised learning algorithm for detecting different local environments on a single-particle level in colloidal systems. In this algorithm, we use a vector of standard bond-orientational order parameters to describe the local environment of each particle. We then use a neural-network-based autoencoder combined with Gaussian mixture models in order to autonomously group together similar environments. We test the performance of the method on snapshots of a wide variety of colloidal systems obtained via computer simulations, ranging from simple isotropically interacting systems to binary mixtures, and even anisotropic hard cubes. Additionally, we look at a variety of common self-assembled situations such as fluid-crystal and crystal-crystal coexistences, grain boundaries, and nucleation. In all cases, we are able to identify the relevant local environments to a similar precision as "standard," manually tuned, and system-specific, order parameters. In addition to classifying such environments, we also use the trained autoencoder in order to determine the most relevant bond orientational order parameters in the systems analyzed.
Keyphrases
  • neural network
  • machine learning
  • deep learning
  • ionic liquid
  • real time pcr
  • protein kinase
  • loop mediated isothermal amplification
  • visible light