Login / Signup

Fire weather effects on flammability of indigenous and invasive alien plants in coastal fynbos and thicket shrublands (Cape Floristic Region).

Samukelisiwe T MsweliAlastair J PottsHervé FritzTineke Kraaij
Published in: PeerJ (2020)
Fire weather conditions enhanced all measures of flammability, whereas live fuel moisture reduced burn intensity and completeness of burn. Live fuel moisture was not significantly correlated with fire weather, suggesting that the mechanism through which fire weather enhances flammability is not live fuel moisture. It furthermore implies that the importance of live fuel moisture for flammability of evergreen shrublands rests on inter-specific and inter-vegetation type differences in fuel moisture, rather than short-term intra-specific fluctuation in live fuel moisture in response to weather conditions. Fuel load significantly increased burn intensity, while reducing ignitability. Although fire weather, live fuel moisture, and fuel load had significant effects on flammability measures, vegetation and species differences accounted for most of the variation. Flammability was generally highest in invasive alien plants, intermediate in fynbos, and lowest in thicket. Fynbos ignited rapidly and burnt completely, whereas thicket was slow to ignite and burnt incompletely. Invasive alien plants were slow to ignite, but burnt with the highest intensity, potentially due to volatile organic composition. The drying of samples resulted in increases in all measures of flammability that were comparable among vegetation groups. Flammability, and by implication fire risk, should thus not increase disproportionately in one vegetation group compared to another under drought conditions-unless the production of dead fuels is disproportionate among vegetation groups. Thus, we suggest that the dead:live fuel ratio is a potentially useful indicator of flammability of evergreen shrublands and that proxies for this ratio need to be investigated for incorporation into fire danger indices.
Keyphrases
  • climate change
  • high intensity
  • south africa
  • risk assessment
  • single molecule