Login / Signup

Potential of plasmonics and nanoscale light-matter interactions for the next generation of optical neural interfaces.

Filippo PisanoLiam CollardDi ZhengMuhammad Fayyaz KashifMohammadrahim KazemzadehAntonio BalenaLinda PiscopoMaria Samuela AndrianiMassimo De VittorioFerruccio Pisanello
Published in: Neurophotonics (2024)
Within the realm of optical neural interfaces, the exploration of plasmonic resonances to interact with neural cells has captured increasing attention among the neuroscience community. The interplay of light with conduction electrons in nanometer-sized metallic nanostructures can induce plasmonic resonances, showcasing a versatile capability to both sense and trigger cellular events. We describe the perspective of generating propagating or localized surface plasmon polaritons on the tip of an optical neural implant, widening the possibility for neuroscience labs to explore the potential of plasmonic neural interfaces.
Keyphrases
  • high resolution
  • high speed
  • single molecule
  • healthcare
  • induced apoptosis
  • working memory