Login / Signup

A potential therapeutic neutralization monoclonal antibody specifically against multi-coxsackievirus A16 strains challenge.

Ruixiao DuQunying MaoYalin HuShuhui LangShiyang SunKelei LiFan GaoLianlian BianCe YangBopei CuiLongfa XuTong ChengZhenglun Liang
Published in: Human vaccines & immunotherapeutics (2019)
Coxsackievirus A16 (CA16) has caused worldwide epidemics of hand, foot and mouth disease (HFMD), particularly in infants and pre-school children. Currently, there are no vaccines or antiviral drugs available for CA16-associated disease. In this study, a CA16-specific monoclonal antibody (MAb) NA11F12 was derived with an epidemic CA16 strain (GenBank no. JX127258). NA11F12 was found to have high cross-neutralization activity against different CA16 subgenotypes but not EV71 using RD cells. The neutralizing titers of NA11F12 ranged from 1:1024 to 1:12288 against A, B1, B2 and C subgenotypes of CA16 and was less than 8 against EV71 strain. In the neonatal mouse model, a single treatment of NA11F12 showed effective protection with a dose- and time-dependent relationship against lethal challenge by CA16 strain (GenBank no. JX481738). At day 1 post-infection, administering more than 0.1 μg/g of NA11F12 could protect 100% newborn mice from mobility and mortality challenged by CA16. With dose of 10 μg/g of NA11F12, a single administration fully protected mice against CA16-associated disease within 4 days post-infection. And there were 80% and 60% mice protected by administering NA11F12 at day 5 post-infection and day 6 post-infection when the control mice had shown clinical symptoms for 1- and 2-day, respectively. Immunohistochemical and histological analysis confirmed that NA11F12 significantly prohibited CA16 VP1 expression in various tissues and prevented CA16-induced necrosis. In conclusion, a CA16-specific MAb NA11F12 with high cross-neutralization activity was identified, which could effectively protect lethal CA16 challenge in mice. It could be a potential therapeutic MAb against CA16 in the future.
Keyphrases
  • monoclonal antibody
  • protein kinase
  • cardiovascular disease
  • oxidative stress
  • zika virus
  • metabolic syndrome
  • coronary artery disease
  • depressive symptoms
  • induced apoptosis
  • cell death
  • high glucose
  • dengue virus
  • pi k akt