Login / Signup

Nano-in-Nano Approach for Enzyme Immobilization Based on Block Copolymers.

Finizia AuriemmaClaudio De RosaAnna MalafronteRocco Di GirolamoChiara SantilloYuri GerelliGiovanna FragnetoRobert BarkerVincenzo PavoneOrnella MaglioAngelina Lombardi
Published in: ACS applied materials & interfaces (2017)
We set up a facile approach for fabrication of supports with tailored nanoporosity for immobilization of enzymes. To this aim block copolymers (BCPs) self-assembly has been used to prepare nanostructured thin films with well-defined architecture containing pores of tailorable size delimited by walls with tailorable degree of hydrophilicity. In particular, we employed a mixture of polystyrene-block-poly(l-lactide) (PS-PLLA) and polystyrene-block-poly(ethylene oxide) (PS-PEO) diblock copolymers to generate thin films with a lamellar morphology consisting of PS lamellar domains alternating with mixed PEO/PLLA blocks lamellar domains. Selective basic hydrolysis of the PLLA blocks generates thin films, patterned with nanometric channels containing hydrophilic PEO chains pending from PS walls. The shape and size of the channels and the degree of hydrophilicity of the pores depend on the relative length of the blocks, the molecular mass of the BCPs, and the composition of the mixture. The strength of our approach is demonstrated in the case of physical adsorption of the hemoprotein peroxidase from horseradish (HRP) using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with H2O2 as substrate. The large surface area, the tailored pore sizes, and the functionalization with hydrophilic PEO blocks make the designed nanostructured materials suitable supports for the nanoconfinement of HRP biomolecules endowed with high catalytic performance, no mass-transfer limitations, and long-term stability.
Keyphrases
  • mental health
  • smoking cessation
  • ionic liquid
  • quantum dots
  • nitric oxide
  • single molecule
  • highly efficient
  • low cost
  • crystal structure
  • tandem mass spectrometry