MGSurvE: A framework to optimize trap placement for genetic surveillance of mosquito population.
Héctor Sánchez CDavid L SmithJohn M MarshallPublished in: bioRxiv : the preprint server for biology (2023)
Mosquito-borne diseases such as malaria and dengue fever continue to pose a major health burden throughout much of the world. The impact of currently-available tools, such as insecticides and antimalarial drugs, is stagnating, and gene drive-modified mosquitoes are considered a novel tool that could contribute to continuing reductions in disease transmission. Gene drive approaches are unique in the field of vector control in that they involve transgenes that could potentially spread on a wide scale, and consequently, surveillance is expected to be a major cost driver for the technology. This is needed to monitor for unintended spread of intact drive alleles, and the emergence of alternative alleles such as homing-resistance alleles and non-functional effector genes. Additionally, surveillance of insecticide-resistance alleles is of interest to support the impact of insecticide-based tools such as bednets. Here, we present MGSurvE, a computational framework that optimizes trap placement for genetic surveillance of mosquito populations in order to minimize the time to detection for an allele of interest. MGSurvE has been tailored to various features of mosquito ecology, and is intended as a resource for researchers to optimize the efficiency of limited surveillance resources.