Login / Signup

The Shockwè trap: a human-baited exposure-free device for surveillance and behaviour studies of anthropophilic vectors.

Ayubo KampangoThomas A SmithAna Paula AbílioElias Alberto MachoeJúlio Francisco MatusseJoão PintoPhilip J McCall
Published in: Wellcome open research (2023)
Background: The human biting rate (MBR) and entomological inoculation rate (EIR) are common parameters routinely used to measure the risk of malaria transmission. Both parameters can be estimated using human landing catches (HLC). Although it is considered the gold-standard, HLC puts collectors at higher risk of infection with mosquito-transmitted pathogens. Methods: A novel exposure-free host-seeking mosquito electrocution trap, the Shockwè trap (SHK), was developed and its efficiency for monitoring mosquito community composition and abundance was compared with human landing catches (HLC) as the gold-standard. Field experiments were performed in Massavasse village, southern Mozambique. Simultaneous indoor and outdoor collections of nocturnal host-seeking mosquitoes were carried out using the SHK and HLC methods. The relative sampling efficiency of SHK was estimated as the ratio of the numbers of mosquitoes caught in SHK compared HLC. Proportionality and density-dependence between SHK and HLC catches were estimated by mean of Bayesian regression approaches. Results: A total of 69,758 and 27,359 host-seeking mosquitoes comprising nineteen species and four genera, were collected by HLC and SHK respectively. In general, SHK and HLC sampled similar numbers of mosquito species, with the exceptions of the least common species Aedes sudanensis , Ae. subargenteus , and Coquillettidia versicolor that were caught only by HLC. The relative sampling efficiency and proportionality between SHK and matched HLC catches varied greatly between species and collection site. However, all mosquitoes collected by SHK were unfed, confirming the Shockwè trap design's performance and reliability as a successful mosquito exposure free sampling approach. Conclusions: Results demonstrate that SHK is a safe and reliable human-exposure free device for monitoring the occurrence of a wide range of mosquito, including major malaria and arboviruses vector species. However, improvements are needed to increase its sampling efficiency for less abundant mosquito species.
Keyphrases
  • aedes aegypti
  • dengue virus
  • endothelial cells
  • zika virus
  • mental health
  • induced pluripotent stem cells
  • healthcare
  • blood pressure
  • risk assessment
  • genetic diversity
  • microbial community
  • plasmodium falciparum