Guest-Reaction Driven Cage to Conjoined Twin-Cage Mitosis-Like Host Transformation.
Pei-Ming ChengLi-Xuan CaiShao-Chuan LiShao-Jun HuDan-Ni YanLi-Peng ZhouQing-Fu SunPublished in: Angewandte Chemie (International ed. in English) (2020)
We report here a guest-reaction-induced mitosis-like host transformation from a known Pd4 L2 cage 1 to a conjoined Pd6 L3 twin-cage 2 featuring two separate cavities. The encapsulation of 1-hydroxymethyl-2-naphthol (G1), a known ortho-quinone methide (o-QMs) precursor, within the hydrophobic cavity of cage 1 is found crucial to realize the cage to twin-cage conversion. Confined G1 molecules within the nanocavity undergo self-coupling dimerization reaction to form 2,2'-dihydroxy-1,1'-dinaphthylmethane (G2) which then triggers the cage to twin-cage mitosis. The same conversion also proceeds, in a much faster rate, via the direct templation of G2, confirming the induced-fit transformation mechanism. The structure of the (G2)2 ⊂2 host-guest complex has been established by X-ray crystallographic study, where cis- to trans- conformational switch on one bridging ligand is revealed.