Engineered Probiotic Bio-Heterojunction with Robust Antibiofilm Modality via "Eating" Extracellular Polymeric Substances for Wound Regeneration.
Miao QinXiumei ZhangHaiyang DingYanbai ChenWenxuan HeYan WeiWeiyi ChenYau Kei ChanYiwei ShiDi HuangYi DengPublished in: Advanced materials (Deerfield Beach, Fla.) (2024)
The compact three-dimensional (3D) structure of extracellular polymeric substances (EPS) within biofilms significantly hinders the penetration of antimicrobial agents, making biofilm eradication challenging and resulting in persistent biofilm-associated infections. To address this challenge, a solution is proposed: a probiotic bio-heterojunction (P-bioHJ) combining Lactobacillus rhamnosus with MXene (Ti 3 C 2 ) quantum dots (MQDs)/FeS heterojunction. This innovation aims to break down the saccharides in EPS, enabling effective combat against biofilm-associated infections. Initially, the P-bioHJ targets saccharides through metabolic processes, causing the collapse of EPS and allowing infiltration into bacterial colonies. Simultaneously, upon exposure to near-infrared (NIR) irradiation, the P-bioHJ produces reactive oxygen species (ROS) and thermal energy, deploying physical mechanisms to combat bacterial biofilms effectively. Following antibiofilm treatment, the P-bioHJ adjusts the oxidative environment, reduces wound inflammation by scavenging ROS, boosts antioxidant enzyme activity, and mitigates the NF-κB inflammatory pathway, thereby accelerating wound healing. In vitro and in vivo experiments confirm the exceptional antibiofilm, antioxidant/anti-inflammatory, and wound-regeneration properties of P-bioHJ. In conclusion, this study provides a promising approach for treating biofilm-related infections.
Keyphrases
- candida albicans
- wound healing
- staphylococcus aureus
- reactive oxygen species
- oxidative stress
- pseudomonas aeruginosa
- anti inflammatory
- biofilm formation
- drug delivery
- stem cells
- quantum dots
- solar cells
- dna damage
- drug release
- cell death
- physical activity
- visible light
- perovskite solar cells
- drinking water
- surgical site infection
- cancer therapy
- mental health
- photodynamic therapy
- weight loss
- escherichia coli
- radiation induced
- signaling pathway
- helicobacter pylori infection
- immune response
- lps induced
- nuclear factor
- helicobacter pylori
- drug induced
- radiation therapy
- bacillus subtilis
- replacement therapy