Flexibly Photo-Regulated Brain-Inspired Functions in Flexible Neuromorphic Transistors.
Laiyuan WangTao ZhangJunhao ShenJin HuangWen LiWei ShiKaiwei HuangMingdong YiPublished in: ACS applied materials & interfaces (2023)
As an attractive prototype for neuromorphic computing, the difficultly attained three-terminal platforms have specific advantages in implementing the brain-inspired functions. Also, in these devices, the most utilized mechanisms are confined to the electrical gate-controlled ionic migrations, which are sensitive to the device defects and stoichiometric ratio. The resultant memristive responses have fluctuant characteristics, which have adverse influences on the neural emulations. Herein, we designed a specific transistor platform with light-regulated ambipolar memory characteristics. Also, based on its gentle processes of charge trapping, we obtain the impressive memristive performances featured by smooth responses and long-term endurable characteristics. The optoelectronic samples were also fabricated on flexible substrates successfully. Interestingly, based on the optoelectronic signals of the flexible devices, we endow the desirable optical processes with the brain-inspired emulations. We can flexibly emulate the light-inspired learning-memory functions in a synapse and further devise the advanced synapse array. More importantly, through this versatile platform, we investigate the mutual regulation of excitation and inhibition and implement their sensitive-mode transformations and the homeostasis property, which is conducive to ensuring the stability of overall neural activity. Furthermore, our flexible optoelectronic platform achieves high classification accuracy when implemented in artificial neural network simulations. This work demonstrates the advantages of the optoelectronic platform in implementing the significant brain-inspired functions and provides an insight into the future integration of visible sensing in flexible optoelectronic transistor platforms.