Preparation of N-Doped Carbon Nanosheets from Sewage Sludge for Adsorption Studies of Cr(VI) from Aqueous Solution.
Yi WangWeinan ZhaoWanlan ZhengShuang ChenJin-Sheng ZhaoPublished in: Nanomaterials (Basel, Switzerland) (2019)
Porous activated carbon with specific morphology and structure are of particular importance for waste water treatment, especially for the adsorption of toxic hexavalent chromium Cr(VI). However, the scalable and cheap production of such absorbents still suffer a grand challenge. Herein, a new type of N-doped nanosheet was innovatively prepared from easily available and low-cost sewage sludge via a facile and recyclable KOH activation method. The N-doped porous carbon nanosheets (N-SAC) produced by introduction of KOH and dicyandiamide, which performed favourable features for metal ions adsorption (93.2% for Cr(VI)) due to its high specific surface area, tuneable pore size distributions and good hydrophilicity. Additionally, the capacity also remained high after two cycles of adsorption by thermal regeneration, with 90.8% removal rate. The DFT calculation also approved that the doping of N could optimize the Mulliken charges distribution and improve the HOMO energy and improve the adsorption ability of N-SAC. This original proposal may inspire new possibility of creating porous carbon absorbents in a recyclable method.