We designed a novel luminescent metal-organic framework (MOF) named Ce-TCPP-LMOF (CTM) through a simple one-pot solvothermal method. CTM was synthesized by using the emerging electrochemiluminescent (ECL) material (4,4',4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) as the organic ligand and Ce(III) as the metal node. We found that CTM not only has the remarkable ability to emit light but also has a uniform "sandwich biscuit" shape and suitable nanoscale size, which are promising for further applications. We also applied CTM to construct a novel ECL immunosensor and achieve sensitive detection of the proprotein convertase subtilisin/kexin type 9 (PCSK9), a biomarker related to cardiovascular diseases. To further amplify the ECL signal of CTM, a novel dual-amplified signal strategy was established by inducing a polyamidoamine dendrimer (PAMAM) and gold nanoparticles (AuNPs). Importantly, we first proved that the ECL signal of the CTM/S2O82- system could be enhanced by the PAMAM electric field. As the electron transfer rate was accelerated by the AuNP layer, this ECL signal was further enhanced in AuNP-modified electrodes. The ECL immunosensor showed desirable performance for PCSK9 analysis within a detection range of 50 fg mL-1 to 10 ng mL-1 and a low limit of detection of 19.12 ± 2.69 fg mL-1. Real sample detection suggested that the immunosensor holds great potential for analyzing clinical serum samples.
Keyphrases
- sensitive detection
- metal organic framework
- loop mediated isothermal amplification
- quantum dots
- label free
- gold nanoparticles
- energy transfer
- cardiovascular disease
- electron transfer
- low density lipoprotein
- real time pcr
- reduced graphene oxide
- climate change
- coronary artery disease
- metabolic syndrome
- mass spectrometry
- human health