Login / Signup

All 3D-Printed Flexible ZnO UV Photodetector on an Ultraflat Substrate.

Yang-Kyu ChoiMyeong-Lok SeolGabrielle MotilalBeomseok KimDong-Il MoonJin-Woo HanM Meyyappan
Published in: ACS sensors (2020)
An all three-dimensional (3D)-printed flexible ZnO ultraviolet (UV) photodetector is demonstrated, where the 3D-printing method is used not only for the electrode and photosensitive material but also for creating a substrate. An ultraflat and flexible substrate capable of serving as the backbone layer is developed using a water-dissolvable polymer layer for surface planarization. A two-layered printing followed by surface treatment is demonstrated for the substrate preparation. As mechanical support but flexible, a thick and sparse thermoplastic polyurethane layer is printed. On its surface, a thin and dense poly(vinyl alcohol) (PVA) is then printed. A precise control of PVA reflow using a microwater droplet results in a flexible and extremely uniform substrate. A Cu-Ag nanowire network is directly 3D printed on the flexible substrate for the conducting layer, followed by ZnO for the photosensitive material. Unlike the planar two-dimensional printing that provides thin films, 3D printing allows the electrode to have a step height, which can be made like a dam to accommodate a thick film of ZnO. Photosensitivity as a function of various ZnO thickness values was investigated to establish an optimal thickness for UV response. The device was also tested in natural sunlight along with stability and reliability.
Keyphrases