Login / Signup

Chemically Nanostructured Organogel Monoliths from Cross-Linked Block Copolymers for Selective Infusion Templating.

Yuanzhi LiAbigail PlummerJörg G Werner
Published in: ACS nano (2024)
Soft gels with spatially defined mesoscale distributions of chemical activity that guide and accelerate reactions by chemical nanoconfinement are found ubiquitously in nature but are rare in artificial systems. In this study, we introduce chemically nanostructured bulk organogels with periodically ordered morphologies from self-assembled block copolymer monoliths with a single selectively cross-linked block (xBCP). Ordered bulk organogels are fabricated with various distinct morphologies including hexagonally packed cylinders and two gyroidal three-dimensionally periodic network structures that exhibit macroscopic and nanoscopic structural integrity upon swelling. Small-angle X-ray scattering and transmission electron microscopy confirm that the periodic arrangement of the chemically distinct blocks in the self-assembled xBCP is retained at polymer fractions as low as 15 vol %. Our results reveal that the swelling equilibrium is not exclusively determined by the cross-linked block despite its structural role but is strongly influenced by the weighted interactions between solvent and the individual nanophases, including the non-cross-linked blocks. Therefore, substantial swelling can be obtained even for solvents that the cross-linked block itself has unfavorable interactions with. Since these ordered organogels present a class of solvent-laden bulk materials that exhibit chemically distinct nanoenvironments on a periodic mesoscale lattice, we demonstrate their use for selective infusion templating (SIT) in a proof-of-concept nanoconfined synthesis of poly(acrylonitrile) from which a monolithic ordered gyroidal mesoporous carbon is obtained. Going forward, we envision using xBCP gels and SIT to enable the fabrication of traditionally hard-to-template materials as periodically nanostructured monoliths due to the extensive tunability in their physicochemical parameter space.
Keyphrases
  • ionic liquid
  • electron microscopy
  • high resolution
  • low dose
  • magnetic resonance
  • magnetic resonance imaging
  • mass spectrometry
  • single cell
  • molecular dynamics
  • metal organic framework
  • dual energy