Login / Signup

JUJUNCAO-Stem-Based Interfacial Solar-Driven Evaporator with Natural Two-Phase Composite Structures of Functional Partition and Inherent Ultralow Vaporization Enthalpy of Water for Stable and Efficient Steam Production.

Chenshu TanXiaomei WuLinmin XiaJiayun SuJianyu WuYan YuRilong Yang
Published in: ACS applied materials & interfaces (2024)
The interfacial solar-driven evaporation has been deemed as an environmentally friendly approach for freshwater generation. Nevertheless, there is still a challenge to obtain solar evaporators with efficient vapor production from low-cost and renewable biomass through a simple preparation process. Herein, the JUJUNCAO stem was selected as the substrate material, and a kind of interfacial solar-driven evaporator with natural two-phase composite structures and inherent ultralow water vaporization enthalpy was constructed by a dip-coating process. The natural two-phase composite structures were utilized as independent functional partition: the low-tortuosity and hydrophilic vascular bundles served as hierarchical channels for rapid water transportation and continuous steam escape, and the honeycomb-like parenchyma cells were considered natural heat insulators for effective thermal management. Furthermore, the JUJUNCAO stem exhibited inherent ultralow water vaporization enthalpy which was only 1.15 kJ g -1 . Benefiting from the natural two-phase composite structures of functional partition and inherent ultralow water vaporization enthalpy, the C-Js evaporator could achieve an evaporation rate of 2.77 kg m -2 h -1 with an efficiency of 85.6% under 1 sun illumination. Meanwhile, the C-Js exhibited a stable and ideal evaporation performance and metal ion rejection behavior in the actual brine desalination process. Owing to the cost-effective and simple pretreatment process, the C-Js evaporator has the potential for freshwater generation in undeveloped areas.
Keyphrases
  • low cost
  • high resolution
  • ionic liquid
  • molecular dynamics simulations
  • wastewater treatment
  • signaling pathway
  • cell cycle arrest
  • heat stress
  • perovskite solar cells