Login / Signup

Perovskite Oxide LaNiO3 Nanoparticles for Boosting H2 Evolution over Commercial CdS with Visible Light.

Junli XuChunfang SunZhaoyu WangYidong HouZhengxin DingSibo Wang
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2018)
LaNiO3 /CdS heterojunction photocatalysts are constructed by compositing LaNiO3 nanoparticles with commercially available CdS, and are used for efficient photocatalytic splitting of H2 O with visible light. The LaNiO3 /CdS hybrids are characterized systematically using a series of physicochemical techniques. The photocatalytic activity of the perovskite hybrids is examined by H2 evolution with Na2 S-NaSO3 as the hole scavenger. The optimized LaNiO3 /CdS sample without the assistance of any cocatalyst (e.g., Pt) delivers a high H2 production rate of 74 μmol h-1 (e.g., 3700 μmol h-1  g-1 ), which is substantially superior to the individual LaNiO3 and CdS. Besides, the composite photocatalyst also manifests high stability. The greatly improved H2 production performance of LaNiO3 /CdS is attributed to the facilitated separation and transport of photoinduced charge carriers, as evidenced by photoelectrochemical (PEC) analyses, such as photoluminscence spectroscopy, transient photocurrent responses, and electrochemical impedance spectroscopy. Moreover, a probable photocatalytic mechanism of the H2 evolution reaction is proposed on the basis of the results of the catalysis evaluation and PEC tests.
Keyphrases
  • visible light
  • solar cells
  • high resolution
  • quantum dots
  • single molecule
  • gold nanoparticles
  • wastewater treatment
  • magnetic resonance
  • mass spectrometry
  • blood brain barrier
  • sensitive detection
  • electron transfer