Login / Signup

Light storage for one second in room-temperature alkali vapor.

Or KatzOfer Firstenberg
Published in: Nature communications (2018)
Light storage, the controlled and reversible mapping of photons onto long-lived states of matter, enables memory capability in optical quantum networks. Prominent storage media are warm alkali vapors due to their strong optical coupling and long-lived spin states. In a dense gas, the random atomic collisions dominate the lifetime of the spin coherence, limiting the storage time to a few milliseconds. Here we present and experimentally demonstrate a storage scheme that is insensitive to spin-exchange collisions, thus enabling long storage times at high atomic densities. This unique property is achieved by mapping the light field onto spin orientation within a decoherence-free subspace of spin states. We report on a record storage time of 1 s in room-temperature cesium vapor, a 100-fold improvement over existing storage schemes. Furthermore, our scheme lays the foundations for hour-long quantum memories using rare-gas nuclear spins.
Keyphrases
  • room temperature
  • ionic liquid
  • high resolution
  • density functional theory
  • mass spectrometry
  • single molecule
  • high speed
  • working memory
  • high density