Login / Signup

Solvent Welding and Imprinting Cellulose Nanofiber Films Using Ionic Liquids.

Guillermo ReyesMaryam BorgheiAlistair W T KingJohanna LahtiOrlando J Rojas
Published in: Biomacromolecules (2018)
Cellulose nanofiber films (CNFF) were treated via a welding process using ionic liquids (ILs). Acid-base-conjugated ILs derived from 1,5-diazabicyclo[4.3.0]non-5-ene [DBN] and 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) were utilized. The removal efficiency of ILs from welded CNFF was assessed using liquid-state nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared spectroscopy (FTIR). The mechanical and physical properties of CNFF indicated surface plasticization of CNFF, which improved transparency. Upon treatment, the average CNFF toughness increased by 27%, and the films reached a Young's modulus of ∼5.8 GPa. These first attempts for IL "welding" show promise to tune the surfaces of biobased films, expanding the scope of properties for the production of new biobased materials in a green chemistry context. The results of this work are highly relevant to the fabrication of CNFFs using ionic liquids and related solvents.
Keyphrases
  • ionic liquid
  • room temperature
  • magnetic resonance
  • mental health
  • physical activity
  • carbon nanotubes
  • computed tomography
  • escherichia coli
  • tissue engineering
  • deep learning