Shape-Controlled Synthesis of Cu 3 TeO 6 Nanoparticles with Photocatalytic Features.
Javier Fernández-CataláLaura JussilaMatyas DabocziFilipp TemerovSalvador EslavaRossella GrecoWei CaoPublished in: Crystal growth & design (2023)
Cu 3 TeO 6 (CTO) has been synthesized by hydrothermal synthesis applying different pH values without any template or a calcination step to control the crystalline phase and the morphology of nanoparticles. The physicochemical properties characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, N 2 adsorption, X-ray photoelectron spectroscopy, and diffuse reflectance ultraviolet-visible (DRUV-vis) spectroscopy techniques revealed that the pH values significantly influence the crystal growth. In acidic media (pH = 2), crystal growth has not been achieved. At pH = 4, the yield is low (10%), and the CTO presents irregular morphology. At pH = 6, the yield increases (up to 71%) obtaining an agglomeration of nanoparticles into spherical morphology. At basic conditions (pH = 8), the yield increases up to 90% and the morphology is the same as the sample obtained at pH = 6. At high basic conditions (pH = 10), the yield is similar (92%), although the morphology changes totally to dispersed nanoparticles. Importantly, the as-prepared CTO semiconductor presents photocatalytic activity for H 2 production using triethanolamine as a sacrificial agent under visible light illumination. The results also revealed that the nanoparticles agglomerated in a spherical morphology with larger surface area presented almost double activities in H 2 production compared to heterogeneously sized particles. These results highlight the suitable optoelectronic properties, including optical band gap, energy levels, and photoconductivity of CTO semiconductors for their use in photocatalytic H 2 production.