Login / Signup

Probing Single-Molecule Adhesion of a Stimuli Responsive Oligo(ethylene glycol) Methacrylate Copolymer on a Molecularly Smooth Hydrophobic MoS2 Basal Plane Surface.

Yuechao TangXurui ZhangPhillip ChoiQingxia LiuZhenghe Xu
Published in: Langmuir : the ACS journal of surfaces and colloids (2017)
Molybdenum disulfide (MoS2) has been receiving increasing attention in scientific research due to its unique properties. Up to now, several techniques have been developed to prepare exfoliated nanosize MoS2 dispersions to facilitate its applications. To improve its desired performance, as-prepared MoS2 dispersion needs further appropriate modification by polymers. Thus, understanding polymer-MoS2 interaction is of great scientific importance and practical interest. Here, we report our results on molecular interactions of a biocompatible stimuli-responsive copolymer with the basal plane surface of MoS2 determined using single molecule force spectroscopy (SMFS). Under isothermal conditions, the single-molecule adhesion force of oligo(ethylene glycol) methacrylate copolymer was found to increase from 50 to 75 pN with increasing NaCl concentration from 1 mM to 2 M, as a result of increasing hydrophobicity of the polymers. The theoretical analysis demonstrated that single-molecule adhesion force is determined by two contributions: the adhesion energy per monomer and the entropic free energy of the stretched polymer chain. Further data analysis revealed a significant increase in the adhesion energy per monomer with a negligible change in the other contribution with increasing salt concentration. The hydrophobic attraction (HA) was found to be the main contribution for the higher adhesion energy in electrolyte solutions of higher NaCl concentrations where the zero-frequency of van der Waals interaction were effectively screened. The results illustrate that oligo(ethylene glycol) methacrylate copolymer is a promising polymer for functionalizing MoS2 and that one can simply change the salt concentration to modulate the single-molecule interactions for desired applications.
Keyphrases