Login / Signup

Postexercise cooling impairs muscle protein synthesis rates in recreational athletes.

Cas J FuchsImre W K KouwTyler A Churchward-VenneJoey S J SmeetsJoan M SendenWouter D van Marken LichtenbeltLex B VerdijkLuc J C van Loon
Published in: The Journal of physiology (2019)
We measured the impact of postexercise cooling on acute postprandial (hourly) as well as prolonged (daily) myofibrillar protein synthesis rates during adaptation to resistance-type exercise over 2 weeks. Twelve healthy males (aged 21 ± 2 years) performed a single resistance-type exercise session followed by water immersion of both legs for 20 min. One leg was immersed in cold water (8°C: CWI), whereas the other leg was immersed in thermoneutral water (30°C: CON). After water immersion, a beverage was ingested containing 20 g of intrinsically (l-[1-13 C]-phenylalanine and l-[1-13 C]-leucine) labelled milk protein with 45 g of carbohydrates. In addition, primed continuous l-[ring-2 H5 ]-phenylalanine and l-[1-13 C]-leucine infusions were applied, with frequent collection of blood and muscle samples to assess myofibrillar protein synthesis rates in vivo over a 5 h recovery period. In addition, deuterated water (2 H2 O) was applied with the collection of saliva, blood and muscle biopsies over 2 weeks to assess the effects of postexercise cooling with protein intake on myofibrillar protein synthesis rates during more prolonged resistance-type exercise training (thereby reflecting short-term training adaptation). Incorporation of dietary protein-derived l-[1-13 C]-phenylalanine into myofibrillar protein was significantly lower in CWI compared to CON (0.016 ± 0.006 vs. 0.021 ± 0.007 MPE; P = 0.016). Postexercise myofibrillar protein synthesis rates were lower in CWI compared to CON based upon l-[1-13 C]-leucine (0.058 ± 0.011 vs. 0.072 ± 0.017% h-1 , respectively; P = 0.024) and l-[ring-2 H5 ]-phenylalanine (0.042 ± 0.009 vs. 0.053 ± 0.013% h-1 , respectively; P = 0.025). Daily myofibrillar protein synthesis rates assessed over 2 weeks were significantly lower in CWI compared to CON (1.48 ± 0.17 vs. 1.67 ± 0.36% day-1 , respectively; P = 0.042). Cold-water immersion during recovery from resistance-type exercise reduces myofibrillar protein synthesis rates and, as such, probably impairs muscle conditioning.
Keyphrases