Calcium-channel-blockers exhibit divergent regulation of cancer extravasation through the mechanical properties of cancer cells and underlying vascular endothelial cells.
S R VaibaviManoj SivasubramaniapandianRahul VaippullyPrivita EdwinaBasudev RoySaumendra Kumar BajpaiPublished in: Cell biochemistry and biophysics (2021)
Cardiovascular and cancer illnesses often co-exist, share pathological pathways, and complicate therapy. In the context of the potential oncological role of cardiovascular-antihypertensive drugs (AHD), here we examine the role of calcium-channel blocking drugs on mechanics of extravasating cancer cells, choosing two clinically-approved calcium-channel blockers (CCB): Verapamil-hydrochloride and Nifedipine, as model AHD to simultaneously target cancer cells (MCF7 and or MDA231) and an underlying monolayer of endothelial cells (HUVEC). First, live-cell microscopy shows that exposure to Nifedipine increases the spreading-area, migration-distance, and frequency of transmigration of MCF-7 cells through the HUVEC monolayer, whereas Verapamil has the opposite effect. Next, impedance-spectroscopy shows that for monolayers of either endothelial or cancer cells, Nifedipine-treatment alone decreases the impedance of both cases, suggesting compromised cell-cell integrity. Furthermore, upon co-culturing MCF-7 on the HUVEC monolayers, Nifedipine-treated MCF-7 cells exhibit weaker impedance than Verapamil-treated MCF-7 cells. Following, fluorescent staining of CCB-treated cytoskeleton, focal adhesions, and cell-cell junction also indicated that Nifedipine treatment diminished the cell-cell integrity, whereas verapamil treatment preserved the integrity. Since CCBs regulate intracellular Ca2+, we next investigated if cancer cell's exposure to CCBs regulates calcium-dependent processes critical to extravasation, specifically traction and mechanics of plasma membrane. Towards this end, first, we quantified the 2D-cellular traction of cells in response to CCBs. Results show that exposure to F-actin depolymerizing drug decreases traction stress significantly only for Nifedipine-treated cells, suggesting an actin-independent mechanism of Verapamil activity. Next, using an optical tweezer to quantify the mechanics of plasma membrane (PM), we observe that under constant, externally-applied tensile strain, PM of Nifedipine-treated cells exhibits smaller relaxation-time than Verapamil and untreated cells. Finally, actin depolymerization significantly decreases MSD only for Verapamil treated cancer-cells and endothelial cells and not for Nifedipine-treated cells. Together, our results show that CCBs can have varied, mechanics-regulating effects on cancer-cell transmigration across endothelial monolayers. A judicious choice of CCBs is critical to minimizing the pro-metastatic effects of antihypertension therapy.
Keyphrases
- induced apoptosis
- cell cycle arrest
- endothelial cells
- cell therapy
- cell death
- endoplasmic reticulum stress
- breast cancer cells
- magnetic resonance imaging
- signaling pathway
- prostate cancer
- stem cells
- cell proliferation
- optical coherence tomography
- climate change
- minimally invasive
- polycyclic aromatic hydrocarbons
- heat stress