Orientation Control of Semiconducting Polymers Using Microchannel Molds.
Moon Jong HanJunkyu KimBomi KimSoon Mo ParkHyungju AhnTae Joo ShinBongSoo KimHyoungsoo KimDong Ki YoonPublished in: ACS nano (2020)
The molecular orientation of organic semiconductors (OSCs) is of fundamental importance to anisotropic electrical behavior as well as superior properties in practical applications. Here, a simple and effective method is demonstrated to fabricate highly oriented semiconducting polymers, poly(3-hexylthiophene) (P3HT) and poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)), by mass transfer effect under microchannel molds by diffusion and convection. Furthermore, parallel or perpendicular molecular arrangements relative to the channel direction were achieved by varying the widths of the microchannels, which are directly observed using polarized optical microscopy and two-dimensional grazing-incidence X-ray diffraction experiments. The method could enable the fabrication of organic field-effect transistors that exhibit anisotropic electrical properties indicating inter- or intrachain charge transport. The resulting platform will provide a simple approach for multidirectional orientations of anisotropic OSCs.