Login / Signup

New Family of Argyrodite Thioantimonate Lithium Superionic Conductors.

Laidong ZhouAbdeljalil AssoudQiang ZhangXiaohan WuLinda F Nazar
Published in: Journal of the American Chemical Society (2019)
We report on a new family of argyrodite lithium superionic conductors, as solid solutions Li6+xMxSb1-xS5I (M = Si, Ge, Sn), that exhibit superionic conductivity. These represent the first antimony argyrodites to date. Exploration of the series using a combination of single crystal X-ray and synchrotron/neutron powder diffraction, combined with impedance spectroscopy, reveals that an optimal degree of substitution (x), and substituent induces slight S2-/I- anion site disorder-but more importantly drives Li+ cation site disorder. The additional, delocalized Li-ion density is located in new high energy lattice sites that provide intermediate interstitial positions (local minima) for Li+ diffusion and activate concerted ion migration, leading to a low activation energy of 0.25 eV. Excellent room temperature ionic conductivity of 14.8 mS·cm-1 is exhibited for cold-pressed pellets-up to 24 mS·cm-1 for sintered pellets-among the highest values reported to date. This enables all-solid-state battery prototypes that exhibit promising properties. Furthermore, even at -78 °C, suitable bulk ionic conductivity of the electrolyte is retained (0.25 mS·cm-1). Selected thioantimonate iodides demonstrate good compatibility with Li metal, sustaining over 1000 h of Li stripping/plating at current densities up to 0.6 mA·cm-2. The significantly enhanced Li ion conduction and lowered activation energy barrier with increasing site disorder reveals an important strategy toward the development of superionic conductors.
Keyphrases
  • solid state
  • room temperature
  • mass spectrometry
  • ionic liquid
  • ion batteries
  • multiple sclerosis
  • ms ms
  • high resolution
  • magnetic resonance imaging
  • dual energy