Login / Signup

Validation and recalibration of sex estimation methods using pubic nonmetric traits for the Chilean population.

Natalia Rojas GonzálezZuzana ObertováDaniel Franklin
Published in: International journal of legal medicine (2024)
Chile had a violent military coup (1973-1990) that resulted in 3,000 victims declared detained, missing or killed; many are still missing and unidentified. Currently, the Human Rights Unit of the Forensic Medical Service in Chile applies globally recognised forensic anthropological approaches, but many of these methods have not been validated in a Chilean sample. As current research has demonstrated population-specificity with extant methods, the present study aims to validate sex estimation methods in a Chilean population and thereafter establish population-specific equations. A sample of 265 os coxae of known age and sex of adult Chileans from the Santiago Subactual Osteology Collection were analysed. Visual assessment and scoring of the pelvic traits were performed in accordance with the Phenice (1969) and Klales et al. (2012) methods. The accuracy of Phenice (1969) in the Chilean sample was 96.98%, with a sex bias of 7.68%. Klales et al. (2012) achieved 87.17% accuracy with a sex bias of -15.39%. Although both methods showed acceptable classification accuracy, the associated sex bias values are unacceptable in forensic practice. Therefore, six univariate and eight multivariate predictive models were formulated for the Chilean population. The most accurate univariate model was the ventral arc at 96.6%, with a sex bias of 5.2%. Classification accuracy using all traits was 97.0%, with a sex bias of 7.7%. This study provides Chilean practitioners a population-specific morphoscopic standard with associated classification probabilities acceptable to accomplish legal admissibility requirements in human rights and criminal cases specific to the second half of the 20th century.
Keyphrases
  • healthcare
  • machine learning
  • deep learning
  • primary care
  • endothelial cells
  • genome wide
  • mental health
  • spinal cord
  • dna methylation
  • spinal cord injury
  • posttraumatic stress disorder