Login / Signup

Flexible and Free-Standing Ti3C2Tx MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Nonaqueous Lithium Metal Batteries.

Yuan TianYongling AnChuanliang WeiBaojuan XiShenglin L XiongJinkui FengYitai Qian
Published in: ACS nano (2019)
Dendrite growth of metal anodes is one of the key hindrances for both secondary aqueous metal batteries and nonaqueous metal batteries. In this work, a freestanding Ti3C2Tx MXene@Zn paper is designed as both zinc metal anode and lithium metal anode host to address the issue. The binder-free Ti3C2Tx MXene@Zn paper exhibits merits of good mechanical flexibility, high electronic conductivity, hydrophilicity, and lithiophilicity. The crystal growth mechanism of Zn metal on common Zn foil and Ti3C2Tx MXene@Zn composite is also studied. It is found that the Ti3C2Tx MXene@Zn paper can effectively suppress the dendrite growth of Zn, enabling reversible and fast Zn plating/stripping kinetics in an aqueous electrolyte. Moreover, the Ti3C2Tx MXene@Zn paper can be used as a 3D host for a lithium metal anode. In this host, Zn is utilized as a nucleation agent to suppress the Li dendrite growth. The freestanding Ti3C2Tx MXene@Zn@Li anode exhibits superior reversibility with high Coulombic efficiency (97.69% over 600 cycles at 1.0 mA cm-2) and low polarization compared with the Cu@Li anode. These findings may be useful for the design of dendrite-free metal-based energy storage systems.
Keyphrases
  • ion batteries
  • heavy metals
  • solid state
  • risk assessment
  • ionic liquid
  • capillary electrophoresis
  • aqueous solution