Login / Signup

Flexible Multimodal Sensors Enhanced by Electrospun Lead-Free Perovskite and PVDF-HFP Composite Form-Stable Mesh Membranes for In Situ Plant Monitoring.

Liru WangQianqian WangChong YaoMinzan LiGang LiuMiao Zhang
Published in: Analytical chemistry (2024)
The pH and humidity of the crop environment are essential indicators for monitoring crop growth status. This study reports a lead-free perovskite/polyvinylidene fluoride-hexafluoropropylene composite (LPPC) to enhance the stability and reliability of in situ plant pH and humidity monitoring. The mesh composite membrane of LPPC illustrates a hydrophobic contact angle of 101.982°, a tensile strain of 800%, and an opposing surface potential of less than -184.9 mV, which ensures fast response, high sensitivity, and stability of the sensor during long-term plant monitoring. The LPPC-coated pH electrode possesses a sensitivity of -63.90 mV/pH, which provides a fast response within 5 s and is inert to environmental temperature interference. The LPPC-coated humidity sensor obtains a sensitivity of -145.7 Ω/% RH, responds in 28 s, and works well under varying light conditions. The flexible multimodal sensor coated with an LPPC membrane completed real-time in situ monitoring of soilless strawberries for 17 consecutive days. Satisfactory consistency and accuracy performance are observed. The study provides a simple solution for developing reliable, flexible wearable multiparameter sensors for in situ monitoring of multiple parameters of crop environments.
Keyphrases
  • emergency department
  • mass spectrometry
  • risk assessment
  • drinking water
  • heart rate
  • solid state
  • ionic liquid
  • flow cytometry
  • cell wall
  • electronic health record