Login / Signup

The Functional 3D Organization of Unicellular Genomes.

Shay Ben-ElazarBenny ChorZohar Yakhini
Published in: Scientific reports (2019)
Genome conformation capture techniques permit a systematic investigation into the functional spatial organization of genomes, including functional aspects like assessing the co-localization of sets of genomic elements. For example, the co-localization of genes targeted by a transcription factor (TF) within a transcription factory. We quantify spatial co-localization using a rigorous statistical model that measures the enrichment of a subset of elements in neighbourhoods inferred from Hi-C data. We also control for co-localization that can be attributed to genomic order. We systematically apply our open-sourced framework, spatial-mHG, to search for spatial co-localization phenomena in multiple unicellular Hi-C datasets with corresponding genomic annotations. Our biological findings shed new light on the functional spatial organization of genomes, including: In C. crescentus, DNA replication genes reside in two genomic clusters that are spatially co-localized. Furthermore, these clusters contain similar gene copies and lay in genomic vicinity to the ori and ter sequences. In S. cerevisae, Ty5 retrotransposon family element spatially co-localize at a spatially adjacent subset of telomeres. In N. crassa, both Proteasome lid subcomplex genes and protein refolding genes jointly spatially co-localize at a shared location. An implementation of our algorithms is available online.
Keyphrases
  • genome wide
  • copy number
  • genome wide identification
  • transcription factor
  • dna methylation
  • bioinformatics analysis
  • machine learning
  • genome wide analysis
  • minimally invasive
  • binding protein
  • cancer therapy