Login / Signup

A polyaromatic receptor with high androgen affinity.

Masahiro YamashinaTakahiro TsutsuiYoshihisa SeiMunetaka AkitaMichito Yoshizawa
Published in: Science advances (2019)
Biological receptors distinguish and bind steroid sex hormones, e.g., androgen-, progestogen-, and estrogen-type hormones, with high selectivity. To date, artificial molecular receptors have been unable to discriminate between these classes of biosubstrates. Here, we report that an artificial polyaromatic receptor preferentially binds a single molecule of androgenic hormones, known as "male" hormones (indicated with m), over progestogens and estrogens, known as "female" hormones (indicated with f), in water. Competitive experiments established the binding selectivity of the synthetic receptor for various sex hormones to be testosterone (m) > androsterone (m) >> progesterone (f) > β-estradiol (f) > pregnenolone (f) > estriol (f). These bindings are driven by the hydrophobic effect, and the observed selectivity arises from multiple CH-π contacts and hydrogen-bonding interactions in the semirigid polyaromatic cavity. Furthermore, micromolar fluorescence detection of androgen was demonstrated using the receptor containing a fluorescent dye in water.
Keyphrases
  • single molecule
  • living cells
  • estrogen receptor
  • quantum dots
  • atomic force microscopy
  • mass spectrometry
  • room temperature
  • smoking cessation