Login / Signup

The effect of cathodal transspinal direct current stimulation on tibialis anterior stretch reflex components in humans.

Eva Rudjord TherkildsenJens Bo NielsenMikkel Malling BeckTomofumi YamaguchiJakob Lorentzen
Published in: Experimental brain research (2021)
Spinal DC stimulation (tsDCS) shows promise as a technique for the facilitation of functional recovery of motor function following central nervous system (CNS) lesion. However, the network mechanisms that are responsible for the effects of tsDCS are still uncertain. Here, in a series of experiments, we tested the hypothesis that tsDCS increases the excitability of the long-latency stretch reflex, leading to increased excitability of corticospinal neurons in the primary motor cortex. Experiments were performed in 33 adult human subjects (mean age 28 ± 7 years/14 females). Subjects were seated in a reclining armchair with the right leg attached to a footplate, which could be quickly plantarflexed (100 deg/s; 6 deg amplitude) to induce stretch reflexes in the tibialis anterior (TA) muscle at short (45 ms) and longer latencies (90-95 ms). This setup also enabled measuring motor evoked potentials (MEPs) and cervicomedullary evoked potentials (cMEPs) from TA evoked by transcranial magnetic stimulation (TMS) and electrical stimulation at the cervical junction, respectively. Cathodal tsDCS at 2.5 and 4 mA was found to increase the long-latency reflex without any significant effect on the short-latency reflex. Furthermore, TA MEPs, but not cMEPs, were increased following tsDCS. We conclude that cathodal tsDCS over lumbar segments may facilitate proprioceptive transcortical reflexes in the TA muscle, and we suggest that the most likely explanation of this facilitation is an effect on ascending fibers in the dorsal columns.
Keyphrases