Nanoconfinement-Enhanced Fire Safety and Mechanical Properties of Polylactic Acid with Nanocerium Metal-Organic Frameworks.
Kaixiong ZhaoWeizhao HuYanbei HouPublished in: ACS applied materials & interfaces (2024)
Ce-based metal-organic frameworks (Ce-MOFs) were successfully synthesized by coordinating binary acid and amino structures with cerium oxides. The quantum dot scale endows Ce-MOFs with enhanced modifiability. Additionally, the phosphorus-rich biomass phytic acid, with its numerous hydroxyl groups, strengthens the H-bond network within the system. Ce-MOFs-centered nanoconfinement can form through the multiple H-bond interactions between Ce-MOFs and polylactic acid (PLA) molecules, thereby improving the mechanical and flame-retardant properties of PLA. The PLA/CeC x O y -P-3 composite exhibited excellent fire retardancy and toxic gas suppression, with a 27.8% decrease in the peak heat release rate and a 50% reduction in the peak smoke production rate. Notably, PLA/CeC x O y -P-3 showed an 80% lower peak CO release compared with the pure PLA sample. Moreover, the incorporation of Ce-MOFs positively influenced the tensile properties of PLA, transforming it from brittle to tough. This work designed and synthesized Ce-MOFs on the quantum scale. The resulting Ce-MOFs with the anticipated structure offer a novel direction for preparing MOFs for flame retardant applications.