A Hybrid Model for Temperature Prediction in a Sheep House.
Dachun FengBing ZhouShahbaz Gul HassanLongqin XuTonglai LiuLiang CaoShuangyin LiuJianjun GuoPublished in: Animals : an open access journal from MDPI (2022)
Too high or too low temperature in the sheep house will directly threaten the healthy growth of sheep. Prediction and early warning of temperature changes is an important measure to ensure the healthy growth of sheep. Aiming at the randomness and empirical problem of parameter selection of the traditional single Extreme Gradient Boosting (XGBoost) model, this paper proposes an optimization method based on Principal Component Analysis (PCA) and Particle Swarm Optimization (PSO). Then, using the proposed PCA-PSO-XGBoost to predict the temperature in the sheep house. First, PCA is used to screen the key influencing factors of the sheep house temperature. The dimension of the input vector of the model is reduced; PSO-XGBoost is used to build a temperature prediction model, and the PSO optimization algorithm selects the main hyperparameters of XGBoost. We carried out a global search and determined the optimal hyperparameters of the XGBoost model through iterative calculation. Using the data of the Xinjiang Manas intensive sheep breeding base to conduct a simulation experiment, the results show that it is different from the existing ones. Compared with the temperature prediction model, the evaluation indicators of the PCA-PSO-XGBoost model proposed in this paper are root mean square error (RMSE), mean square error (MSE), coefficient of determination ( R 2 ), mean absolute error (MAE) , which are 0.0433, 0.0019, 0.9995, 0.0065, respectively. RMSE, MSE, and MAE are improved by 68, 90, and 94% compared with the traditional XGBoost model. The experimental results show that the model established in this paper has higher accuracy and better stability, can effectively provide guiding suggestions for monitoring and regulating temperature changes in intensive housing and can be extended to the prediction research of other environmental parameters of other animal houses such as pig houses and cow houses in the future.