Login / Signup

Condensation of Humid Air on Superhydrophobic Surfaces: Effect of Nanocoatings on a Hierarchical Interface.

Tibin M ThomasPallab Sinha Mahapatra
Published in: Langmuir : the ACS journal of surfaces and colloids (2021)
Vapor condensation is a well-known phase-change phenomenon observed in nature as well as in different industrial applications. Superhydrophobic surfaces (SHSs) with low hysteresis can efficiently drain off the condensate and rejuvenate the nucleation sites further. In this work, three distinct SHSs were fabricated by nanocoating three hydrophobic agents, viz., perfluoro-octyl-triethoxy-silane (PFOTS), perfluoro-octanoic-acid (PFOA), and commercial Glaco solution on a hierarchical aluminum surface. The surface morphology of all surfaces was investigated, and its effects on the wetting, droplet departure, and overall heat-transfer coefficient (HTC) during condensation phenomena in the humid air (>95% noncondensable gases) were analyzed. The contact angle hysteresis of all three surfaces was very low (∼5°); however, different wetting behaviors were observed during the condensation, depending on the adhesion of the condensate drop with nanoscale textures in the microcavities. Dropwise condensation (DWC) was observed in silane and Glaco-coated surfaces. A gravity-assisted sweeping mechanism removed the condensate from the silane-coated surface. In contrast, the condensate was ejected out of the plane of the Glaco-coated surface by droplet jumping. The PFOA-coated surface has shown DWC initially and floods in the later stages due to highly pinned condensed droplets. This study reports an enhancement of ∼35 to ∼110% in the HTC for the SHS-exhibiting gravity-assisted sweeping mechanism compared to the droplet-jumping mechanism. The present work will provide substantial insights into the fabrication of efficient hierarchical interfaces for water-energy nexus applications.
Keyphrases