Login / Signup

Photoinitiated Polymerization of Hydrogels by Graphene Quantum Dots.

Yuna KimJaekwang SongSeong Chae ParkMinchul AhnMyung Jin ParkSung Hyuk SongSi-Youl YooSeung Gweon HongByung Hee Hong
Published in: Nanomaterials (Basel, Switzerland) (2021)
As a smart stimulus-responsive material, hydrogel has been investigated extensively in many research fields. However, its mechanical brittleness and low strength have mattered, and conventional photoinitiators used during the polymerization steps exhibit high toxicity, which limits the use of hydrogels in the field of biomedical applications. Here, we address the dual functions of graphene quantum dots (GQDs), one to trigger the synthesis of hydrogel as photoinitiators and the other to improve the mechanical strength of the as-synthesized hydrogel. GQDs embedded in the network effectively generated radicals when exposed to sunlight, leading to the initiation of polymerization, and also played a significant role in improving the mechanical strength of the crosslinked chains. Thus, we expect that the resulting hydrogel incorporated with GQDs would enable a wide range of applications that require biocompatibility as well as higher mechanical strength, including novel hydrogel contact lenses and bioscaffolds for tissue engineering.
Keyphrases
  • tissue engineering
  • quantum dots
  • hyaluronic acid
  • drug delivery
  • wound healing
  • sensitive detection
  • oxidative stress
  • cancer therapy
  • mass spectrometry
  • ionic liquid
  • walled carbon nanotubes