Login / Signup

Simple Urea Immersion Enhanced Removal of Tetracycline from Water by Polystyrene Microspheres.

Junjun MaBing LiLincheng ZhouYin ZhuJi LiYong Qiu
Published in: International journal of environmental research and public health (2018)
Antibiotics pose potential ecological risks in the water environment, necessitating their effective removal by reliable technologies. Adsorption is a conventional process to remove such chemicals from water without byproducts. However, finding cheap adsorbents with satisfactory performance is still a challenge. In this study, polystyrene microspheres (PSM) were enhanced to adsorb tetracycline by surface modification. Simple urea immersion was used to prepare urea-immersed PSM (UPSM), of which surface groups were characterized by instruments to confirm the effect of immersion. Tetracycline hydrochloride (TC) and doxycycline (DC) were used as typical adsorbates. The adsorptive isotherms were interpreted by Langmuir, Freundlich, and Tempkin models. After urea immersion, the maximum adsorption capacity of UPSM at 293 K and pH 6.8 increased about 30% and 60%, achieving 460 mg/g for TC and 430 mg/g for DC. The kinetic data were fitted by first-order and second-order kinetics and Weber⁻Morris models. The first-order rate constant for TC adsorption on UPSM was 0.41 /h, and for DC was 0.33 /h. The cyclic urea immersion enabled multilayer adsorption, which increased the adsorption capacities of TC on UPSM by two to three times. The adsorption mechanism was possibly determined by the molecular interaction including π⁻π forces, cation-π bonding, and hydrogen bonding. The simple surface modification was helpful in enhancing the removal of antibiotics from wastewater with similar structures.
Keyphrases
  • aqueous solution
  • dendritic cells
  • human health
  • high resolution
  • drinking water
  • big data
  • visible light
  • deep learning
  • simultaneous determination