Breaking Anti-PT Symmetry by Spinning a Resonator.
Huilai ZhangRan HuangSheng-Dian ZhangYing LiCheng-Wei QiuFranco NoriHui JingPublished in: Nano letters (2020)
Non-Hermitian systems, with symmetric or antisymmetric Hamiltonians under the parity-time (PT) operations, can have entirely real or imaginary eigenvalues. This fact has led to surprising discoveries such as loss-induced lasing and topological energy transfer. A merit of anti-PT systems is free of gain, but in recent efforts on making anti-PT devices, nonlinearity is still required. Here, counterintuitively, we show how to achieve anti-PT symmetry and its spontaneous breaking in a linear device by spinning a lossy resonator. Compared with a Hermitian spinning device, significantly enhanced optical isolation and ultrasensitive nanoparticle sensing are achievable in the anti-PT-broken phase. In a broader view, our work provides a new tool to study anti-PT physics, with such a wide range of applications as anti-PT lasers, anti-PT gyroscopes, and anti-PT topological photonics or optomechanics.