Login / Signup

Biomechanical behavior of three maxillary expanders in cleft lip and palate: a finite element study.

Angela Maria Bautista PatiñoMonise de Paula RodriguesRoberto Sales E PessoaSalomón Yezioro RubinskyKi Beom KimCarlos José SoaresGuilherme de Araújo Almeida
Published in: Brazilian oral research (2024)
This study evaluated the stress distribution in the dentoalveolar and palatal bone structures during maxillary expansion in a 17-year-old male patient with bilateral cleft lip and palate (BCLP) using expanders with dental (HYRAX) and skeletal anchorage (MARPE). For the generation of the specific finite element models, cone-beam computed tomography was used, and the DICOM files were exported to Mimics 3-Matic (Materialise) and Patran (MSC Software) software. Three specific three-dimensional models were generated: A) HYRAX: conventional four-banded hyrax screw (9 mm); B) MARPE-DS: 3 miniscrews (1.8 mm diameter - 5.4 mm length) and four-banded dental anchorage; and C) MARPE-NoDS: 3 miniscrews without dental anchorage. Maxillary expansion was simulated by activating the expanders transversely 1 mm on the "X" axis. HYRAX resulted in higher levels of deformation predominantly in the dentoalveolar region. MARPE-DS showed stress in the dentoalveolar region and mainly in the center of the palatal region, at approximately 4,000 με. MARPE-NoDS exhibited evident stress only in the palatal region. High stress levels in the root anchoring teeth were observed for HYRAX and MARPE-DS. In contrast, MARPE-NoDS cause stress on the tooth structure. The stress distribution from the expanders used in the BLCP showed asymmetric expansive behavior. During the initial activation phase of expansion, the HYRAX and MARPE-DS models produced similarly high strain at the dentoalveolar structures and upper posterior teeth displacement. The MARPE-NoDS model showed restricted strain on the palate.
Keyphrases
  • cone beam computed tomography
  • finite element
  • stress induced
  • oral health
  • case report
  • high resolution
  • computed tomography
  • bone mineral density
  • optical coherence tomography