Login / Signup

Solvent Effects on Ultrafast Photochemical Pathways.

Ravi Kumar VenkatramanAndrew J Orr-Ewing
Published in: Accounts of chemical research (2021)
ConspectusPhotochemical reactions are increasingly being used for chemical and materials synthesis, for example, in photoredox catalysis, and generally involve photoexcitation of molecular chromophores dissolved in a liquid solvent. The choice of solvent influences the outcomes of the photochemistry because solute-solvent interactions modify the energies of and crossings between electronic states of the chromophores, and they affect the evolving structures of the photoexcited molecules. Ultrafast laser spectroscopy methods with femtosecond to picosecond time resolution can resolve the dynamics of these photoexcited molecules as they undergo structural and electronic changes, relax back to the ground state, dissipate their excess internal energy to the surrounding solvent, or undergo photochemical reactions. In this Account, we illustrate how experimental studies using ultrafast lasers can reveal the influences that different solvents or cosolutes exert on the photoinduced nonadiabatic dynamics of internal conversion and intersystem crossing in nonradiative relaxation pathways. Although the environment surrounding a solute molecule is rapidly changing, with fluctuations in the coordination to neighboring solvent molecules occurring on femtosecond or picosecond time scales, we show that it is possible to photoexcite selectively only those molecular chromophores transiently experiencing specific solute-solvent interactions such as intermolecular hydrogen bonding.The effects of different solvation environments on the photodynamics are illustrated using four selected examples of photochemical processes in which the solvent has a marked effect on the outcomes. We first consider two aromatic carbonyl compounds, benzophenone and acetophenone, which are known to undergo fast intersystem crossing to populate the first excited triplet state on time scales of a few picoseconds. We show that the nonadiabatic excited-state dynamics are modified by transient hydrogen bonding of the carbonyl group to a protic solvent or by coordination to a metal cation cosolute. We then examine how different solvents modify the competition between two alternative relaxation pathways in a photoexcited UVA-sunscreen molecule, diethylamino hydroxybenzoyl hexyl benzoate (DHHB). This relaxation back to the ground electronic state is an essential part of the effective operation of the sunscreen compound, but the dynamics are sensitive to the surrounding environment. Finally, we consider how solvents of different polarity affect the energies and lifetimes of excited states with locally excited or charge-transfer character in heterocyclic organic compounds used as excited-state electron donors for photoredox catalysis. With these and other examples, we seek to develop a molecular level understanding of how the choice of solution environment might be used to control the outcomes of photochemical reactions.
Keyphrases
  • ionic liquid
  • single molecule
  • energy transfer
  • electron transfer
  • type diabetes
  • high resolution
  • molecular dynamics
  • single cell
  • dna methylation
  • decision making
  • adipose tissue
  • insulin resistance