Login / Signup

KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance.

Bhawna DiptaSalej SoodVikas MangalVinay BhardwajAjay Kumar ThakurVinod KumarBrajesh Singh
Published in: Molecular biology reports (2024)
Advances in plant molecular breeding have resulted in the development of new varieties with superior traits, thus improving the crop germplasm. Breeders can screen a large number of accessions without rigorous and time-consuming phenotyping by marker-assisted selection (MAS). Molecular markers are one of the most imperative tools in plant breeding programmes for MAS to develop new cultivars possessing multiple superior traits. Single nucleotide polymorphisms (SNPs) are ideal for MAS due to their low cost, low genotyping error rates, and reproducibility. Kompetitive Allele Specific PCR (KASP) is a globally recognized technology for SNP genotyping. KASP is an allele-specific oligo extension-based PCR assay that uses fluorescence resonance energy transfer (FRET) to detect genetic variations such as SNPs and insertions/deletions (InDels) at a specific locus. Additionally, KASP allows greater flexibility in assay design, which leads to a higher success rate and the capability to genotype a large population. Its versatility and ease of use make it a valuable tool in various fields, including genetics, agriculture, and medical research. KASP has been extensively used in various plant-breeding applications, such as the identification of germplasm resources, quality control (QC) analysis, allele mining, linkage mapping, quantitative trait locus (QTL) mapping, genetic map construction, trait-specific marker development, and MAS. This review provides an overview of the KASP assay and emphasizes its validation in crop improvement related to various biotic and abiotic stress tolerance and quality traits.
Keyphrases