Login / Signup

High-Performance Ammonia Protonic Ceramic Fuel Cells Using a Pd Inter-Catalyst.

Heon Jun JeongWanhyuk ChangBeum Geun SeoYun Sung ChoiKeun Hee KimDong Hwan KimJoon Hyung Shim
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
This study reports the performance and durability of a protonic ceramic fuel cells (PCFCs) in an ammonia fuel injection environment. The low ammonia decomposition rate in PCFCs with lower operating temperatures is improved relative to that of solid oxide fuel cells by treatment with a catalyst. By treating the anode of the PCFCs with a palladium (Pd) catalyst at 500 °C under ammonia fuel injection, the performance (peak power density of 340 mW cm -2 at 500 °C) is approximately two-fold higher than that of the bare sample not treated with Pd. Pd catalysts are deposited through an atomic layer deposition post-treatment process on the anode surface, in which nickel oxide (NiO) and BaZr 0.2 Ce 0.6 Y 0.1 Yb 0.1 O 3-δ (BZCYYb) are mixed, and Pd can penetrate the anode surface and porous interior. Impedance analysis confirmed that Pd increased the current collection and significantly reduced the polarization resistance, particularly in the low-temperature region (≈500 °C), thereby improving the performance. Furthermore, stability tests showed that superior durability is achieved compared with that of the bare sample. Based on these results, the method presented herein is expected to represent a promising solution for securing high-performance and stable PCFCs based on ammonia injection.
Keyphrases