Login / Signup

Tuning Carrier Tunneling in van der Waals Heterostructures for Ultrahigh Detectivity.

Quoc An VuJin Hee LeeVan Luan NguyenYong Seon ShinSeong Chu LimKiyoung LeeJinseong HeoSeongjun ParkKunnyun KimYoung Hee LeeWoo Jong Yu
Published in: Nano letters (2016)
Semiconducting transition metal dichalcogenides (TMDs) are promising materials for photodetection over a wide range of visible wavelengths. Photodetection is generally realized via a phototransistor, photoconductor, p-n junction photovoltaic device, and thermoelectric device. The photodetectivity, which is a primary parameter in photodetector design, is often limited by either low photoresponsivity or a high dark current in TMDs materials. Here, we demonstrated a highly sensitive photodetector with a MoS2/h-BN/graphene heterostructure, by inserting a h-BN insulating layer between graphene electrode and MoS2 photoabsorber, the dark-carriers were highly suppressed by the large electron barrier (2.7 eV) at the graphene/h-BN junction while the photocarriers were effectively tunneled through small hole barrier (1.2 eV) at the MoS2/h-BN junction. With both high photocurrent/dark current ratio (>105) and high photoresponsivity (180 AW-1), ultrahigh photodetectivity of 2.6 × 1013 Jones was obtained at 7 nm thick h-BN, about 100-1000 times higher than that of previously reported MoS2-based devices.
Keyphrases