Login / Signup

Differential associations between scale-free neural dynamics and different levels of cognitive ability.

Leisi PeiXinlin ZhouFrederick K S LeungGuang Ouyang
Published in: Psychophysiology (2023)
As indicators of cognitive function, scale-free neural dynamics are gaining increasing attention in cognitive neuroscience. Although the functional relevance of scale-free dynamics has been extensively reported, one fundamental question about its association with cognitive ability remains unanswered: is the association universal across a wide spectrum of cognitive abilities or confined to specific domains? Based on dual-process theory, we designed two categories of tasks to analyze two types of cognitive processes-automatic and controlled-and examined their associations with scale-free neural dynamics characterized from resting-state electroencephalography (EEG) recordings obtained from a large sample of human adults (N = 102). Our results showed that resting-state scale-free neural dynamics did not predict individuals' behavioral performance in tasks that primarily engaged the automatic process but did so in tasks that primarily engaged the controlled process. In addition, by fitting the scale-free parameters separately in different frequency bands, we found that the cognitive association of scale-free dynamics was more strongly manifested in higher-band EEG spectrum. Our findings indicate that resting-state scale-free dynamics are not universal neural indicators for all cognitive abilities but are mainly associated with high-level cognition that entails controlled processes. This finding is compatible with the widely claimed role of scale-free dynamics in reflecting properties of complex dynamic systems.
Keyphrases
  • resting state
  • functional connectivity
  • working memory
  • endothelial cells
  • machine learning
  • multidrug resistant
  • high density