Login / Signup

Paracellular transport of phosphate along the intestine.

Thomas KnöpfelNina HimmerkusDorothee GünzelMarkus BleichNati HernandoCarsten Alexander Wagner
Published in: American journal of physiology. Gastrointestinal and liver physiology (2019)
Inorganic phosphate (Pi) is crucial for many biological functions, such as energy metabolism, signal transduction, and pH buffering. Efficient systems must exist to ensure sufficient supply for the body of Pi from diet. Previous experiments in humans and rodents suggest that two pathways for the absorption of Pi exist, an active transcellular Pi transport and a second paracellular pathway. Whereas the identity, role, and regulation of active Pi transport have been extensively studied, much less is known about the properties of the paracellular pathway. In Ussing chamber experiments, we characterized paracellular intestinal Pi permeabilities and fluxes. Dilution potential measurements in intestinal cell culture models demonstrated that the tight junction is permeable to Pi, with monovalent Pi having a higher permeability than divalent Pi. These findings were confirmed in rat and mouse intestinal segments by use of Ussing chambers and a combination of dilution potential measurements and fluxes of radiolabeled 32Pi. Both techniques yielded very similar results, showing that paracellular Pi fluxes were bidirectional and that Pi permeability was ~50% of the permeability for Na+ or Cl-. Pi fluxes were a function of the concentration gradient and Pi species (mono- vs. divalent Pi). In mice lacking the active transcellular Pi transport component sodium-dependent Pi transporter NaPi-IIb, the paracellular pathway was not upregulated. In summary, the small and large intestines have a very high paracellular Pi permeability, which may favor monovalent Pi fluxes and allow efficient uptake of Pi even in the absence of active transcellular Pi uptake.NEW & NOTEWORTHY The paracellular permeability for phosphate is high along the entire axis of the small and large intestine. There is a slight preference for monovalent phosphate. Paracellular phosphate fluxes do not increase when transcellular phosphate transport is genetically abolished. Paracellular phosphate transport may be an important target for therapies aiming to reduce intestinal phosphate absorption.
Keyphrases