Login / Signup

From a Diphosphanegermylene to Nickel, Palladium, and Platinum Complexes Containing Germyl PGeP Pincer Ligands.

Lucía Álvarez-RodríguezJavier BrugosJavier A CabezaPablo García-ÁlvarezEnrique Pérez-Carreño
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2017)
The PGeP pincer-type germylene Ge(NCH2 PtBu2 )C6 H4 (1) has been used to prepare a family of group 10 metal complexes, namely, [MCl{κ3 P,Ge,P-GeCl(NCH2 PtBu2 )2 C6 H4 }] (M=Ni (2Ni ), Pd (2Pd ), Pt (2Pt )), featuring a chloridogermyl PGeP pincer ligand and a Cl-Ge-M-Cl bond sequence. Their reactivity is not initially centered on the metal atom but on their Ge atom. Complexes 2Ni and 2Pd easily led to the hydrolyzed products [Ni2 Cl2 {μ-(κ3 P,Ge,P-Ge(NCH2 PtBu2 )2 C6 H4 )2 O}], which features a Cl-Ni-Ge-O-Ge-Ni-Cl bond sequence, and [PdCl{κ3 P,Ge,P-Ge(OH)(NCH2 PtBu2 )2 C6 H4 }], which contains a hydroxidogermyl PGeP pincer ligand (2Pt is reluctant to undergo hydrolysis). Simple chloride exchange reactions led to the methoxidogermyl, methylgermyl, and phenylgermyl derivatives [MCl{κ3 P,Ge,P-GeR(NCH2 PtBu2 )2 C6 H4 }] (M=Pd, Pt; R=OMe, Me, Ph). Whereas the palladium complexes [PdCl{κ3 P,Ge,P-GeR(NCH2 PtBu2 )2 C6 H4 }] (R=Me, Ph) reacted with more MeLi or PhLi to give palladium black and GeR2 (NCH2 PtBu2 )2 C6 H4 (R=Me, Ph), similar reactions with the analogous platinum complexes afforded the transmetalation derivatives [PtR{κ3 P,Ge,P-GeR(NCH2 PtBu2 )2 C6 H4 }] (R=Me, Ph). The short length of the CH2 PtBu2 arms of the PGeP pincer ligands forces the metal atoms of all these complexes to be in a very distorted square-planar ligand environment. The reactivity results have been rationalized with theoretical calculations.
Keyphrases
  • molecular dynamics
  • reduced graphene oxide
  • transition metal
  • molecular dynamics simulations
  • amino acid