Login / Signup

Thermogravimetric Analysis of Modified Montmorillonite Clay for Mycotoxin Decontamination in Cereal Grains.

Bunmi K OlopadeObinna C NwinyiJoseph A AdekoyaIsiaka A LawalOlushola A AbiodunSolomon U OranusiPatrick B Njobeh
Published in: TheScientificWorldJournal (2020)
Thermogravimetric analysis (TGA) was carried out to study the stability of nanoformulations used for the decontamination of mycotoxins. The TGA patterns of the nanoformulations from montmorillonite clay and Cymbopogon citratus (lemongrass) extracts were assessed with temperature ranging from ambient (20°C) to 1000°C. The various nanoformulations studied included unmodified montmorillonite clay (Mont), montmorillonite washed with sodium chloride (Mont-Na), montmorillonite mixed with lemongrass essential oil (Mont-LGEO), and montmorillonite mixed with an equal quantity of lemongrass powder (Mont-LGP). There was no significant difference in the median of the various nanoformulations within 4 weeks at p < 0.05 using the Kruskal-Wallis nonparametric test. For the TGA, the first degradation for montmorillonite clay and the nanoformulations occurred at a temperature between 80 and 101°C and was attributed to the loss of lattice water outside the coordination sphere with a range of 3.5-6.5% weight loss. The second degradation occurred within the temperature of 338 to 344°C, and the third, at a temperature between 640 and 668°C for Mont and the formulations of Mont-Na, Mont-LGEO, and Mont-LGP. There were strong similarities in the degradation patterns of Mont and Mont-Na with the minimum difference being the relatively higher weight loss of the sodium-exchanged cation for Mont-Na at the third degradation step. Hence, the order of stability from the most resistant to the least resistant to degradation is as follows: Mont-LGEO ≥ Mont-Na ≥ Mont ≥ Mont-LGP.
Keyphrases
  • weight loss
  • bariatric surgery
  • essential oil
  • type diabetes
  • adipose tissue
  • preterm birth
  • gestational age
  • obese patients