Age-related changes in late I-waves influence motor cortex plasticity induction in older adults.
George M OpieJohn CirilloJohn G SemmlerPublished in: The Journal of physiology (2018)
Previous research shows that neuroplasticity assessed using transcranial magnetic stimulation (TMS) is reduced in older adults. While this deficit is often assumed to represent altered synaptic modification processes, age-related changes in the interneuronal circuits activated by TMS may also contribute. Here we assessed age-related differences in the characteristics of the corticospinal indirect (I) waves and how they influence plasticity induction in primary motor cortex. Twenty young (23.7 ± 3.4 years) and 19 older adults (70.6 ± 6.0 years) participated in these studies. I-wave recruitment was assessed by changing the direction of the current used to activate the motor cortex, whereas short-interval intracortical facilitation (SICF) was recorded to assess facilitatory I-wave interactions. In a separate study, I-wave periodicity TMS (iTMS) was used to examine the effect of I-wave latency on motor cortex plasticity. Data from the motor-evoked potential (MEP) onset latency produced using different coil orientations suggested that there were no age-related differences in preferential I-wave recruitment (P = 0.6). However, older adults demonstrated significant reductions in MEP facilitation at all 3 SICF peaks (all P values < 0.05) and a delayed latency of the second and third SICF peaks (all P values < 0.05). Using I-wave intervals that were optimal for young and older adults, these changes in the late I-waves were shown to influence the plasticity response in older adults after iTMS. These findings suggest that temporal characteristics are delayed for the late I-waves in older adults, and that optimising TMS interventions based on I-wave characteristics may improve the plasticity response in older adults.