Overexpression of Macrophage-Inducible C-Type Lectin Mincle Aggravates Proinflammatory Responses to Streptococcus pneumoniae with Fatal Outcome in Mice.
Femke D HollwedelRegina MausJennifer StolperAyesha KhanBridget L StockerMattie S M TimmerXiuyuan LuAndreas PichTobias WelteSho YamasakiUlrich A MausPublished in: Journal of immunology (Baltimore, Md. : 1950) (2020)
Macrophage-inducible C-type lectin (Mincle)-dependent sensing of pathogens triggers proinflammatory immune responses in professional phagocytes that contribute to protecting the host against pathogen invasion. In this study, we examined whether overexpression of Mincle that is designed to improve early pathogen sensing by professional phagocytes would improve lung-protective immunity against Streptococcus pneumoniae in mice. Proteomic profiling of alveolar macrophages of Mincle transgenic (tg) mice stimulated with the Mincle-specific pneumococcal ligand glucosyl-diacylglycerol (Glc-DAG) revealed increased Nlrp3 inflammasome activation and downstream IL-1β cytokine release that was not observed in Glc-DAG-stimulated Mincle knockout or Nlrp3 knockout macrophages. Along this line, Mincle tg mice also responded with a stronger Nlrp3 expression and early proinflammatory cytokine release after challenge with S. pneumoniae, ultimately leading to fatal pneumonia in the Mincle tg mice. Importantly, Nlrp3 inhibitor treatment of Mincle tg mice significantly mitigated the observed hyperinflammatory response to pneumococcal challenge. Together, we show that overexpression of the pattern recognition receptor Mincle triggers increased Glc-DAG-dependent Nlrp3 inflammasome activation in professional phagocytes leading to fatal pneumococcal pneumonia in mice that is amenable to Nlrp3 inhibitor treatment. These data show that ectopic expression of the Mincle receptor confers increased susceptibility rather than resistance to S. pneumoniae in mice, thus highlighting the importance of an inducible Mincle receptor expression in response to microbial challenge.
Keyphrases
- nlrp inflammasome
- high fat diet induced
- cell proliferation
- immune response
- wild type
- adipose tissue
- metabolic syndrome
- microbial community
- binding protein
- skeletal muscle
- single cell
- smoking cessation
- electronic health record
- data analysis
- big data
- artificial intelligence
- acute respiratory distress syndrome
- gram negative
- low density lipoprotein