Login / Signup

Hybrid Hydrogen Bonding Strategy to Construct Instantaneous Self-Healing Highly Elastic Ionohydrogel for Multi-Functional Electronics.

Hongfei HuangLijie SunLuzhi ZhangYalin ZhangYouwei ZhangShunan ZhaoShijia GuWei SunZhengwei You
Published in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Gels show great promise for applications in wearable electronics, biomedical devices, and energy storage systems due to their exceptional stretchability and adjustable electrical conductivity. However, the challenge lies in integrating multiple functions like elasticity, instantaneous self-healing, and a wide operating temperature range into a single gel. To address this issue, a hybrid hydrogen bonding strategy to construct gel with these desirable properties is proposed. The intricate network of hybrid strong weak hydrogen bonds within the polymer matrix enables these ionohydrogel to exhibit remarkable instantaneous self-healing, stretching up to five times their original length within seconds. Leveraging these properties, the incorporation of ionic liquids, water, and zinc salts into hybrid hydrogen bond crosslinked network enables conductivity and redox reaction, making it a versatile ionic skin for real-time monitoring of human movements and respiratory. Moreover, the ionohydrogel can be used as electrolyte in the assembly of a zinc-ion battery, ensuring a reliable power supply for wearable electronics, even in extreme conditions (-20 °C and extreme deformations). This ionohydrogel electrolyte simplifies the diverse structural requirements of gels to meet the needs of various electronic applications, offering a new approach for multi-functional electronics.
Keyphrases