Login / Signup

Design of Solid Polycationic Electrolyte to Enable Durable Chloride-Ion Batteries.

Xu YangZhiqiang FuRan HanYaojie LeiShijian WangXin ZhaoYuefeng MengHao LiuDong ZhouDoron AurbachGuoxiu Wang
Published in: Angewandte Chemie (International ed. in English) (2024)
The high energy density and cost-effectiveness of chloride-ion batteries (CIBs) make them promising alternatives to lithium-ion batteries. However, the development of CIBs is greatly restricted by the lack of compatible electrolytes to support cost-effective anodes. Herein, we present a rationally designed solid polycationic electrolyte (SPE) to enable room-temperature chloride-ion batteries utilizing aluminum (Al) metal as an anode. This SPE endows the CIB configuration with improved air stability and safety (i.e. free of flammability and liquid leakage). A high ionic conductivity (1.3×10 -2  S cm -1 at 25 °C) has been achieved by the well-tailored coordination structure of the SPE. Meanwhile, the solid polycationic electrolyte ensures stable electrodes|electrolyte interfaces, which effectively inhibit the growth of dendrites on the Al anodes and degradation of the FeOCl cathodes. The Al|SPE|FeOCl chloride-ion batteries showcased a high discharge capacity around 250 mAh g -1 (based on the cathodes) and extended lifespan. Our electrolyte design opens a new avenue for developing low-cost chloride-ion batteries.
Keyphrases
  • ion batteries
  • ms ms
  • room temperature
  • low cost
  • ionic liquid
  • solid phase extraction
  • gold nanoparticles
  • mass spectrometry
  • carbon nanotubes
  • liquid chromatography